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This paper presents application and tuning of the equilibrated residual method (ERM) of
a posteriori error estimation for coupled electromechanical problems of direct, inverse and
general piezoelectricity. In these three cases, either electric potential is induced by strains or
strains appear due to the applied electric potential or both phenomena occur simultaneously.
The mentioned ERM is assigned for the assessment of modeling and approximation errors of
the numerical finite element solution. Such error values usually serve as indication for adap-
tive hierarchical modeling and adaptive mesh changes within thin and/or solid piezoelectric
members so as to obtain the solution of assumed accuracy.
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1. Introduction

The origins and development of the residual equilibrated approach to a posteriori error esti-
mation can be attributed to Ladeveze and Leguillon (1983), Kelly (1984), Bank and Weisser
(1985), and Ainsworth and Oden (1993c). Implementation of the equilibrated residual method
(ERM) to error estimation of finite element solutions was presented by Ainsworth and Oden
(1992). The method was applied to elliptic problems by the same authors in (1993a,b). In 1994,
they used the method for analysis of elasticity problems. Application of the method to thin- or
thick-walled elastic structures was performed by Oden and Cho (1996), and Zboiński (2013) as
well. The recent works on the method concern: stability analysis (Ainsworth et al., 2007), gener-
alizations to singularly perturbed reaction-diffusion problems (Ainsworth and Babuska, 1999),
and application to conforming, non-conforming and discontinuous Galerkin finite element meth-
ods (Ainsworth, 2005). Application of the method to dielectricity (elliptic) and piezoelectricity
(coupled) problems was suggested in (Zboiński, 2018). Recently (Zboiński, 2020), tuning of the
method was performed in the case of thin elastic structures and suggested for dielectric and
piezoelectric domains. It results from the above works that effective application of ERM may
need its tuning by a modified definition of ERM local problems. Particularly, thin-walled elastic
and piezoelectric domains need such procedures. In this context, the novelty and scope of the
paper include: presentation of ERM for coupled problems as exemplified by piezoelectricity, and
introduction of the tuning procedure to thick- or thin-walled piezoelectric domains.

1Paper presented during PCM-CMM 2023
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2. Model problems

Let us start with the functional of electromechanical potential energy defined within volume V
which may represent any bounded three-dimensional piezoelectric domain. In this paper, we limit
it to symmetric-thickness, thin- or thick-walled domains defined in a standard way (Zboiński,
2010, 2019) with the use of mid-surface and thickness concepts as this is a typical geometry of
piezoelectric transducers (actuators or sensors). After taking the first variation of this functional,
one can obtain

∫

V

(−Dijklεklδεij + C
ijkEkδεij + f

iδui) dV +

∫

P

piδui dS

+

∫

V

(γijEjδEi + C
iklεklδEi) dV −

∫

Q

cδφ dS = 0
(2.1)

With the strain and electric field definitions, weak formulation (2.1) becomes a functional of
u = {ui}, i = 1, 2, 3 and φ, where u and δu denote the solution and virtual (or admissible)
displacements, while φ and δφ denote the solution and virtual (or admissible) electric potential.
Note that δu ∈ w+U , with w being the lift (given displacements) of Dirichlet data (Demkowicz,
2007), and U = {δu ∈ (H1(V ))3 : δu = 0 on W} representing the space of kinematically
admissible displacements within the domain V . Also, δφ ∈ χ + Φ, with χ being the lift (given
potential) of Dirichlet data, and Φ = {δφ ∈ H1(V ) : δφ = 0 on F} representing the space of
electrically admissible potentials in V . The searched coupled solution belongs to (u, φ) ∈ U ×Φ,
i.e.

B(δu,u) − C(δu, φ) = L(δu)

− C(δφ,u)− b(δφ, φ) = −l(δφ)
(2.2)

where the bilinear, coupling and linear forms are

B(δu,u) =

∫

V

Dijklεklδεij dV =

∫

V

Dijkluk,lδui,j dV

C(δu, φ) =

∫

V

CijkEkδεij dV =

∫

V

CijkEkδui,j dV

L(δu) =

∫

V

f iδuidV +

∫

P

piδui dS

b(δφ, φ) =

∫

V

γijEjδEi dV =

∫

V

γijφ,jδφ,i dV

C(δφ,u) =

∫

V

CiklεklδEi dV =

∫

V

Ciklεklδφ,i dV

l(δφ) =

∫

Q

cδφ dS = 0

(2.3)

and represent the first variations of (or virtual) strain, electric field and coupling energies,
respectively, B, b and C, and the first variations of (or virtual) works, L and l, of the external
forces and charges, respectively. With the reciprocity theorem (Ieşan, 1990), one can convert the
above functional into the corresponding local (strong) formulation (Zboiński, 2016). Existence
and uniqueness of the solution to problem (2.2) and (2.3) is based on the Lax-Milgram theorem
(cf. Cimatti, 2004).
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In Eqs. (2.3), εkl and D
ijkl, i, j, k, l = 1, 2, 3 stand for the strain and elastic constant tensors,

while f i represent components of the mass load vector f . Additionally, di, Ej , i, j = 1, 2, 3 are
the electric displacement and electric field vectors. The tensors γij, Ckij and Cikl, i, j, k, l =
1, 2, 3 represent dielectric and piezoelectric constants under constant strain. Additionally, pi are
components of the surface load p, while −c stands for the surface charge. Finally, P , W , Q
and F denote the loaded, supported, charged and grounded parts of the boundary S ≡ ∂V of
the body domain. We assume S ≡ P ∪W = Q ∪ F .
After finite element hpq- and hπρ-approximation (Zboiński, 2016, 2018), where h, p, q and

π, ρ are the element size, and longitudinal and transverse approximation orders within the
displacement and electric potential fields, respectively, above relations (2.2) and (2.3) can be
defined with the aproximation of the solution quantities and spaces, i.e. (uhpq, φhπρ) ∈ Uhpq ×
Φhπρ.
In the case of direct piezoelectricity (sensing), the external, mechanical (volume and/or

surface) loadings produce strains which in turn induce electric potential within the piezoelectric
member. No external electric charges are present in this case. As a result, the assumption of
c = 0 has to be substituted into the second line of (2.1). In the case of inverse piezoelectricity
(actuation), the mechanical loadings are not present – f = {f i} = 0 and p = {pi} = 0 in the
first line of (2.1).
With the use of decoupling assumptions of Cijk = 0, Cikl = 0, i, j, k = 1, 2, 3, functional

(2.1) is replaced with two independent mechanical and electric potential energy functionals.

3. ERM a posteriori error estimation

In this Section, we present our original results of implementetion of the equilibrated residual
method (ERM) of a posteriori error estimation to the coupled problems of piezoelectricity. The

global η and element
e
η error estimators are defined by us as

η =
∑

e

e
η =
∑

e

[

−
e

Π (u, φ)−
∫

Se\S

uT〈
e
r (uhpq)〉 d

e

S +

∫

Se\S

φ〈
e

h (φ
hπρ)〉 d

e

S

−
1

2

e

B (u
hpq,uhpq) +

1

2

e

C (u
hpq, φhπρ) +

1

2

e

C (φ
hπρ,uhpq) +

1

2

e

b (φ
hπρ, φhπρ)

]

(3.1)

Note that in (3.1), the sum (over elements e) of terms of the first line represents electrome-
chanical potential energy Π(u, φ) of the exact solution (u, φ), while the sum of terms of the
second line the analogous energy Π(uhpq, φhπρ) of the numerical solution (uhpq, φhπρ), the error
of which is a posteriori estimated. In the first line, the potential energy is defined as a sum of the
strain, electric field and coupling energies deminished by the work of external forces and charges,
i.e. Π = 0.5B −C − 0.5b−L+ l. After the partitioning of the domain V into finite elements of

volumes
e

V , ∂
e

V =
e

S, this energy has to be completed by the work of the internal (interelement)

forces and charges represented by the last two components of the first line. The terms 〈
e
r (uhpq)〉

and 〈
e

h (φhπρ)〉 represent the equilibrated interelement stress reaction vectors and the equili-
brated interelement equivalent electric charge, respectively, typical for the equilibrated residual
method.
In the second line of (3.1), the equivalent definition, Π = −0.5B + C + 0.5b, of the elec-

tromechanical potential energy is applied. It needs introduction of stationarity results (2.2), with
δu and δφ replaced by u and φ, i.e. L = B − C and −l = −b − C into the former definition
so as to eliminate the external work from the modified potential energy definition before the
partitioning.
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As the exact solution (u, φ) of (3.1) can hardly be found, we approximate this functional
with the finite element method and search for the approximation (uHPQ, φHΠP ) of the exact
solution. Here, H, P , Q and Π, P stand for the element size, and longitudinal and transverse
approximation orders within the displacement and electric potential fields, respectively. After
taking the first variation of approximated functional (3.1) with respect to δuHPQ and δφHΠP

and equating it to zero, one obtains the following global stationarity condition

0 =
∑

e

[

− δ
e

Π (uHPQ, φHΠP )−
∫

Se\S

(δuHPQ)T〈
e
r (uhpq)〉 d

e

S +

∫

Se\S

δφHΠP 〈
e

h (φ
hπρ)〉 d

e

S

]

(3.2)

equivalent to the following element (or local) sets of two coupled conditions (cf. Zboiński, 2016)

e

B (δuHPQ,uHPQ)−
e

C (δuHPQ, φHΠP ) =
e

L (δuHPQ) +

∫

e

S\S

(δuHPQ)T〈
e
r (uhpq)〉 d

e

S

e

C (δφ
HΠP ,uHPQ)+

e

b (δφ
HΠP , φHΠP ) =

e

l (δφ
HΠP ) +

∫

e

S\S

δφHΠP 〈
e

h (φ
hπρ)〉 d

e

S

(3.3)

where the first definition of the potential energy was utilized on the element level. The searched
coupled solution belongs to (uHPQ, φHΠP ) ∈ UHPQ × ΦHΠP , where δuHPQ ∈ wHPQ + UHPQ,
with wHPQ being the approximated lift of Dirichlet data, and UHPQ = {δuHPQ ∈

(H1(
e

V ))3 : δuHPQ = 0 on W ∩ d
e

S} representing the local (element) space of kinematically ad-

missible displacements within the domain
e

V . Also, δφHΠP ∈ χHΠP + ΦHΠP , with χHΠP being

the lift of Dirichlet data, and ΦHΠP = {δφHΠP ∈ H1(
e

V ) : δφHΠP = 0 on F ∩d
e

S} representing
the element space of electrically admissible potentials. The above set (3.3) can also be written
in the finite element language (Zboiński, 2016, 2018).

The above set (3.3) corresponds to the general piezoelectricity case. The cases of direct or

inverse piezoelectricity need neglecting the works of external forces
e

l or
e

L, respectively. For the

decoupled problems of elasticity and dielectricity, one needs to neglect coupling energies
e

C in
both equations (3.3) so as to obtain two independent equations for these cases.

4. ERM local problems determination

It can be demonstrated that above coupled local problems (3.3) can be either Dirichlet

(
e

S ∩W 6= ∅ and
e

S ∩F 6= ∅) or Neumann (
e

S ∩W = ∅ and
e

S ∩F = ∅ or mixed (Dirichlet-

-Neumann of two-types:
e

S ∩W = ∅ and
e

S ∩F 6= ∅ or
e

S ∩W 6= ∅ and
e

S ∩F = ∅). The Dirichlet
local problems are well-posed (they are solvable by their definition).

In the case of the Neumann displacement boundary conditions, the local piezoelectric prob-
lems are solvable provided that the external and internal load compatibility condition is valid
(Ainsworth and Oden, 1993c)

−
e

B (u
hpq,1)+

e

C (φ
hpq,1)+

e

L (1) +

∫

e

S\S

1T〈
e
r (uhpq)〉 d

e

S= 0 (4.1)
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where 1 = (1, 1, 1)T. In the case of the Neumann electric potential boundary condition, we
suggest that the external and equivalent charge compatibility condition holds, i.e.

e

b (φ
hπρ, 1)+

e

C (u
hpq, 1)−

e

l (1) +

∫

e

S\S

1〈
e

h (φ
hπρ)〉 d

e

S= 0 (4.2)

5. Linear and higher-order equilibration

5.1. Equilibrated interelement stress reactions and equivalent charges

Here the linear-equilibration method of Ainsworth and Oden (1993a) and Ainsworth et al.
(1994) for elliptic (elasticity) problems is utilized. We extend it to the coupled problems (piezo-
electricity). In the method, the unknown vectors of the equilibrated interelement stress reactions

〈
e
r (uhpq)〉 are defined (Ainsworth and Oden, 1993b; Ainsworth et al., 1994), with the displace-
ments uhpq from the global problem, i.e.

〈
e
r (uhpq)〉 =

fe
α
e
r (uhpq)+

ef
α
f
r (uhpq) (5.1)

and

e
r (uhpq) = H(

e
ν)
e
σ (uhpq)

f
r (uhpq) = H(

e
ν)
f
σ (uhpq) (5.2)

with

H(
e
ν) =







ν1 0 0 ν2 0 ν3
0 ν2 0 ν1 ν3 0
0 0 ν3 0 ν2 ν1






(5.3)

The vector
e
ν= [ν1, ν2, ν3]

T denotes the normal unit vector, outward to Se. The terms
e
σ and

f
σ

represent six-component element stress vectors of the element e and its any neighbour f . The

splitting functions are defined with their directional components, i.e.
fe
α= diag [α1, α2, α3], with

fe
α= 1−

ef
α and 1 = diag [1, 1, 1]. In the case of the first-order equilibration performed within

the parametric elements, it is sufficient to define the splitting functions
fe
α as linear ones, with

the use of the vertex nodes splitting factors
fe
αk, k = 1, 2, . . . ,K of the applied parametrized

prismatic (K = 6) element

fe
α =

∑

k

fe
αk λk (5.4)

where λk represents the vertex node shape functions of the element.

In the electric field, the unknown scalar equilibrated interelement equivalent charge

〈
e

h (uhπρ)〉 is proposed by us to be determined by the scalar electric potential φhπρ taken from
the global problem

〈
e

h (φ
hπρ)〉 =

fe

β
e

h (φ
hπρ)+

ef

β
f

h (φ
hπρ) (5.5)

Above

e

h (φ
hπρ) =

e
ν
e

d (φ
hπρ)

f

h (φ
hπρ) =

e
ν
f

d (φ
hπρ) (5.6)
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The terms
e

d and
f

d are three-component electric displacement vectors of the element e and its

any neighbour f . The quantity
fe

β is the scalar splitting function, while
fe

β = 1−
ef

β . For the

first-order equilibration, we suggest to define the splitting function
fe

β as a linear one, by means

of the vertex nodes splitting factors
fe

βk, i.e.

fe

β =
∑

k

fe

βk λk (5.7)

where k = 1, 2, . . . ,K and K = 6 again.

5.2. Determination of the splitting factors

The procedure starts with the standard version of the first-order equilibration condition for
elasticity (see Ainsworth and Oden, 1993a; Ainsworth et al., 1994) extended by us to the case
of piezoelectricity

−
e

B (uhpq,λk)+
e

C (φhpq,λk)+
e

L (λk) +

∫

e

S\S

λ
T
k 〈
e
r (uhpq)〉 d

e

S= 0

e

b (φ
hπρ, λk)+

e

C (uhpq, λk)−
e

l (λk) +

∫

e

S\S

λk〈
e

h (φ
hπρ)〉 d

e

S= 0
(5.8)

by taking into consideration the coupling form
e

C in mechanical condition (5.8)1 and adding
electrical condition (5.8)2, where λk = diag [λk, λk, λk] due to vectorial character of the dis-
placement field. It is worth noticing that

∑6
k=1 λk = 1, i.e. the sums of the first and second

equation (5.8) gives (4.1) and (4.2), and the load and/or charge compatibility conditions are
fulfilled for the elements in the Neumann or mixed (Dirichlet-Neumann) local problems.
Taking advantage of (5.1) and (5.4), and (5.5) and (5.7) as well, substituted into (5.8), we

get

0 = −
e

B (u
hpq,λk)+

e

C (φ
hπρ,λk)+

e

L (λk)

+
∑

f

[

fe
αk

∫

ef

S

λk
e
r (uhpq) d

ef

S +
ef
αk

∫

ef

S

λk
f
r (uhpq) d

ef

S

]

0 =
e

b (φ
hπρ, λk)+

e

C (u
hpq, λk)−

e

l (λk)

+
∑

f

[

fe

β k

∫

ef

S

λk
e

h (φ
hπρ) d

ef

S +
ef

β k

∫

ef

S

λk
f

h (φ
hπρ) d

ef

S

]

(5.9)

where
fe
αk includes three directional stress splitting factors at node k of the element e, while

fe

β k
denotes scalar charge splitting factor for node k of the element e. Above, the integration over

the internal part of element boundary
e

S \S from (5.8) was replaced with the integrations over

the common sides
ef

S of the element e and any of its neighbours f . It is worth noticing that three
displacement and one potential equations (5.9) are independent. The procedure for calculation
of the four splitting factors may be proposed to take advantage of the sets of equations (5.9)
written for the element patches composed of elements surrounding any node of the domain V , at
which the element vertex nodes meet (cf. Ainsworth and Oden, 1993b, Ainsworth et al., 1994).
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In the case of higher-order equilibration, relations (5.8) and (5.9) have to be modified by
introduction of the shape functions λl,m corresponding to any higher-order nodal dof (l,m) at
the element edges and sides, where l stands for the edge or side number, and m defines the dof
number at this edge or side, instead of the linear vertex node shape functions λk. The searched

splitting factors
fe
αl,m and

fe

β l,m can be obtained from the sets of modified equations (5.8) and
(5.9) written for the element patches composed of elements surrounding any edge or side node
(l,m) of the domain V . The method is presented in (Zboiński, 2020) for the elasticity case. Its
application to dielectricity is analogous.

6. Numerical experiments

In this Section, we will check the effectivity of ERM error estimation applied to coupled problems
of piezoelectricity. We will show that such effectivity is different in the cases of direct, inverse
and general piezoelectricity. These results will be compared to the analogous effectivity for the
reference problems of uncoupled elasticty (elastostatics) and uncoupled dielectricity (electrostat-
ics). In these tests, the global effectivity indices θ for the modeling, approximation and total
errors of the model piezoelectric plate problem will be presented. Such indices are defined as
a ratio of the estimated error, expressed by the ERM estimator η and the exact value of the
potential energy error e:

θ =
η

e
(6.1)

Three components eM , eC , eE of the potential energy error e will be introduced by us, i.e.
related to the mechanical, coupling and electric parts of this energy

Π(u, φ) −Π(uhpq, φhπρ) ≡ Π(u− uhpq, φ− φhπρ) =
1

2
B(u− uhpq,u− uhpq)

− C(u− uhpq, φ− φhπρ)−
1

2
b(φ− φhπρ, φ− φhπρ) = eM − eC − eE = e

(6.2)

Above, the energy errors are defined as differences between potential energies. However, they and
their components are proposed to be equivalently expressed by energies defined on differences
u− uhpq and φ− φhπρ of the exact and numerical solutions. Derivation of the above equivalent
formula required utilization of the potential energy definitions obtained from (2.1) and (2.3) by
means of replacement of δu and δφ by u and φ and addition of coefficient 0.5 before the forms B
and b. Then, elimination of the work of external forces L and charges l with use of stationarity
conditions (2.2) was performed (with δu and δφ replaced by u and φ again). Finally, taking
advantage of the mathematical properties of the quadratic forms B and b and mixed forms C
was necessary.
For the thin- or thick-walled piezoelectric members considered in the paper, the hierarchical

modelling is proposed by us (cf. Zboiński, 2010, 2016, 2018, 2019) where the mechanical, electric
and electromechanical cases are considered. Such modelling implies division of the total energy
error e ≡ et into its modeling em and approximation ea parts in accordance with the following
relation describing the total, modeling and approximation errors of the solution displacements
and electric potential

et = u− uhpq = (u− uq) + (uq − uhpq) = em + ea

et = φ− φhπρ = (φ− φρ) + (φρ − φhπρ) = em + ea
(6.3)

where (uq, φρ) represents the exact solution to the hierarchical electromechanical (piezoelectric)
model of the order (q, ρ) (Zboiński, 2016), with q and ρ denoting the mechanical and electric
field transverse orders.
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Substitution of (6.3) into (6.2) leads to nine global error components: etM , e
m
M , e

a
M , e

t
C , e

m
C ,

eaC , e
t
E , e

m
E , e

a
E contributing to the energy error e. Also, the analogous division of the global

error estimator η introduced in (3.1) is applied in the paper. Thus, nine resulting component
effectivity indices can be defined. The analogous component quantities are defined for finite
elements.

In the case of the total et and approximation ea error calculations, the unknown values of
the exact solutions (u, φ) and (uq, φρ) are replaced with their best numerical approximations
(uref , φref ) and (umod, φmod), respectively, obtained from the hpq- and hπρ-approximated version
of (2.2). For the total ηt (or approximation ηa) error estimator, relations (6.2) and (6.3) hold, with
u and φ (or uq and φρ) replaced by their proper ERM approximations uHPQ and φHΠP . Global
values of the modeling error and estimator are obtained from em = et − ea and ηm = ηt − ηa.

6.1. Model problem

The applied model problem concerns a uniformly loaded, hardly clamped, square piezoelectric
(piezoceramic) plate. The plate is charged on its top surface, and grounded around its lateral
sides. The length of the plate is equal to l = 3.1415 · 10−2m. The plate thickness is t = 0.15 ·
10−2m. Young’s modulus of the piezoelectric is E = 0.5 ·1011 N/m2. Poisson’s ratio equals 0.294.
The dielectric permitivity (isotropic dielectric constant) under constant stress is δ = 0.1593 ·
10−7 F/m. The non-zero anisotropic piezoelectricity constants under constant stress are equal
to: c13 = c23 = −0.15 · 10

−9 C/N, c33 = 0.3 · 10
−9 C/N, and c52 = c61 = 0.5 · 10

−9 C/N. The
way the measurable dielectric and piezoelectric constants under constant stress can be converted
into the corresponding constants under constant strain, present in (2.1)-(2.3), can be found in
(Preumont, 2006; Zboiński, 2020). The vertical pressure load is equal to p = 4.0 · 106 N/m2. The
uniform charges applied to the top surface are equal to c = 0.2 ·10−1 C/m2. Due to symmetry of
the geometry, load, charge and boundary conditions, only a quarter of dimensions l/2× l/2× t
of the plate is analysed.

Due to space limitation, the applied electromechanical model is limited to one hierarchical
model of orders q = 2 and ρ = 2. This is possible as the solution results for all models q ­ 2
and ρ ­ 2 is very close (qualitatively almost identical). Because of the same reason (qualitative
similarity observed), only one examplary mesh 3 × 3 × 2 of prismatic elements, is applied for
three (direct, inverse and general) piezoelectricity cases and two uncoupled cases of elasticity
and dielectrciity.

Our effectivity calculations are performed for changing values (p = π = 2, 3, . . . , pmax =
πmax, pmax = πmax = 7 or 8) of the longitudinal, displacement and electric potential, orders
of approximation, as the error estimation is most sensitive to changes in these discretization
parameters. The approximations (uref , φref ) and (umod, φmod) of the exact solutions are obtained
from (3.1) with m = 9, p = π = 9 and q = ρ = 6 and m = 9, p = π = 9 and q = ρ = 2,
respectively, wherem = l/2h and h is the characteristic length of the applied prismatic elements.

6.2. Results

In Table 1, the reference values of effectivity indices for two decoupled problems are presented.
The ERM local problems results were obtained with initial tunning within the mechanical field
due to thin-walled character of the plate domain. 18 vertex degrees of freedom within each ele-
ment were constrained instead of constraining 6 such dofs and linear equilibration (cf. Zboiński,
2020). In the initial tuning, the longitudinal and transverse orders of approximation in ERM
local problems were increased by 1 with respect to global problems for both the fields. For p ­ 3
or ρ ­ 3, all effectivities are close to the desired value of 1.0, i.e. the estimated errors are very
close to the true errors.
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Table 1. Global effectivities for elasticity (E) and dielectricity (D) cases – global problem pa-
rameters: (E) q = 2, p = var, m = 3, (D) ρ = 2, π = var, m = 3; local problems characterization:
(E) 18 dofs constrained within the mechanical field, H = h, P = p + 1, Q = q + 1; (D) 1 dof
constrained and linear equilibration within the electric field, H = h, Π = π + 1, P = ρ+ 1

Problem
type

Estimator Compo- Effectivity symbol and values
compo- nent for varying p or π orders
nent part 1 2 3 4 5 6 7 8

uncoupled total θtM 0.52 1.70 1.17 0.96 0.99 1.00 1.01 1.00
elasticity mechanical approx. θaM 0.52 1.68 1.21 0.92 0.98 1.05 1.15 1.45
case modeling θmM 0.59 1.90 1.07 0.99 1.00 0.99 0.99 0.98

uncoupled total θtE 1.49 2.74 1.07 1.05 0.95 0.92 0.90 0.91
dielectricity electric approx. θaE 1.49 2.78 1.11 1.15 1.09 1.10 1.04 1.19
case modeling θmE 1.17 0.85 0.86 0.86 0.87 0.88 0.89 0.90

Table 2. Global effectivities for general (G), direct (D) and inverse (I) piezoelectricity cases
– global problem parameters (G, D, I): q = ρ = 2 , p = π = var, m = 3; local problems
characterization (G, D, I)): 18 dofs constrained within the mechanical field, 1 dof constrained
and linear equilibration within the electric field, H = h, P = p + 1, Q = q + 1, Π = π + 1,
P = ρ+ 1

Problem
type

Estimator Compo- Effectivity symbol and values
compo- nent for following p or π
nent part 1 2 3 4 5 6 7

general
piezo-
electri-
city
case

total θtM 0.68 2.01 1.26 0.99 1.00 1.01 1.02
mechanical approx. θaM 0.68 2.01 1.50 0.94 0.89 0.96 1.17

modeling θmM 0.74 1.96 1.05 1.01 1.02 1.01 1.02
total θtC 1.44 1.76 0.81 0.72 0.76 0.73 0.70

coupling approx. θaC 1.44 1.75 0.79 0.73 0.77 0.85 1.06

modeling θmC 0.28 1.38 0.37 0.32 0.39 0.30 0.35

total θtE 1.13 1.58 0.84 0.78 0.78 0.71 0.62

electric approx. θaE 1.13 1.63 0.85 0.81 0.84 0.90 1.09

modeling θmE 0.67 0.83 0.48 0.45 0.44 0.42 0.43

direct
piezo-
electri-
city
case

total θtM 0.59 1.89 1.24 0.97 1.00 1.01 1.02
mechanical approx. θaM 0.59 1.89 1.44 0.84 0.86 0.95 1.18

modeling θmM 0.63 1.90 1.05 1.01 1.02 1.01 1.02
total θtC 0.01 0.66 0.80 0.74 0.77 0.74 0.73

coupling approx. θaC 0.04 0.64 0.79 0.74 0.77 0.85 1.06

modeling θmC 0.36 1.32 0.49 0.45 0.48 0.40 0.44

total θtE 0.73 1.28 0.83 0.74 0.74 0.68 0.58

electric approx. θaE 0.73 1.33 0.83 0.77 0.82 0.89 1.09

modeling θmE 0.21 0.79 0.29 0.27 0.28 0.24 0.26

inverse
piezo-
electri-
city
case

total θtM 1.45 3.09 2.15 2.25 1.85 1.57 1.16

mechanical approx. θaM 1.44 3.10 2.26 2.54 2.43 2.72 2.92

modeling θmM 8.82 3.66 1.27 1.17 0.94 0.89 0.83
total θtC 1.43 2.82 1.10 1.14 1.06 1.05 1.02

coupling approx. θaC 1.43 2.83 1.15 1.21 1.17 1.22 1.32
modeling θmC 1.14 0.99 1.08 1.09 1.02 1.00 1.00
total θtE 1.57 2.62 1.16 1.18 1.05 0.98 0.94

electric approx. θaE 1.58 2.68 1.17 1.30 1.27 1.36 1.35
modeling θmE 1.58 1.07 1.01 0.94 0.93 0.92 0.92
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In Table 2, the effectivity results are presented for three piezoelectric problems. The initial
tunning of ERM was applied within the mechanical and electric fields as for the referrence
elasticity and dielectricity problems, i.e. 18 mechanical vertex dofs were constrained and the
ERM local approximation orders were higher by 1 in comparison to global problems. No other
(additional) tuning was applied. In the case of general and direct piezoelectricity problems,
considerable underestimation (effectivities lower than 1.0) of the modelling, approximation and
total errors can be observed for the coupling and electric parts of the error. On the countrary, in
the case of the inverse piezoelectricity, substantial overestimation (effectivities higher than 1.0)
of the approximation and total errors can be seen for the mechanical part of the error. All
unsatisfactory values are shown in bold in the table, for p = π ­ 3.

Table 3. Global effectivities for general (G), direct (D) and inverse (I) piezoelectricity cases
– global problem parameters (G, D, I): q = ρ = 2, p = π = var, m = 3; local problems
characterization: (G) 18 dofs constrained within the mechanical field, 1 dof constrained and
linear equilibration within the electric field, H = h, P = p+1, Q = q+1, Π = π+2, P = ρ+2,
(D) 18 dofs constrained within the mechanical field, 1 dof constrained and linear equilibration
within the electric field, H = h, P = p + 2, Q = q + 2, Π = π + 2, P = ρ + 2, (I) 18 dofs
constrained and higher-order equilibration within the mechanical field, 1 dof constrained and
linear equilibration within the electric field, H = h, P = p+1, Q = q+1, Π = π+1, P = ρ+1

Problem
type

Estimator Compo- Effectivity symbol and values
compo- nent for the following p or π
nent part 1 2 3 4 5 6 7

general
piezo-
electri-
city
case

total θtM 0.66 2.03 1.24 0.97 0.98 0.99 1.00
mechanical approx. θaM 0.66 2.02 1.49 0.93 0.89 0.90 1.17

modeling θmM 1.13 2.22 1.02 0.97 1.00 1.00 1.00
total θtC 1.18 1.92 0.85 0.83 0.87 0.92 0.97

coupling approx. θaC 1.14 1.80 0.79 0.73 0.77 0.85 1.06

modeling θmC 1.89 5.38 0.91 0.93 0.88 0.89 0.87

total θtE 1.44 2.42 1.01 0.93 0.92 0.96 0.99

electric approx. θaE 1.45 2.54 0.99 0.88 0.89 0.94 1.12

modeling θmE 1.90 4.41 0.98 0.90 0.88 0.92 0.94

direct
piezo-
electri-
city
case

total θtM 0.73 2.28 1.34 1.01 1.03 1.03 1.04
mechanical approx. θaM 0.71 2.28 1.55 0.96 1.00 1.10 1.35

modeling θmM 1.40 2.28 1.14 1.02 1.03 1.02 1.03
total θtC 0.35 1.03 0.89 0.93 0.96 1.09 1.24

coupling approx. θaC 0.35 1.07 0.87 0.93 0.94 1.04 1.27

modeling θmC 1.53 1.68 0.89 0.86 1.04 1.19 1.28

total θtE 0.90 1.58 1.00 0.93 0.96 1.06 1.17

electric approx. θaE 0.89 1.53 0.99 0.93 0.96 1.04 1.26

modeling θmE 1.82 2.74 0.93 0.86 0.96 1.09 1.16

inverse
piezo-
electri-
city
case

total θtM 1.44 2.74 1.48 1.22 1.20 0.97 0.91

mechanical approx. θaM 1.44 2.74 1.54 1.30 1.45 1.27 1.63

modeling θmM 8.71 3.14 0.92 0.90 0.85 0.82 0.81
total θtC 1.43 2.86 1.05 1.09 1.01 1.01 1.00

coupling approx. θaC 1.43 2.87 1.12 1.20 1.12 1.17 1.20
modeling θmC 0.47 1.07 1.09 1.12 1.02 1.01 1.00
total θtE 1.57 2.57 1.16 1.18 1.06 0.98 0.94

electric approx. θaE 1.58 2.63 1.17 1.27 1.26 1.32 1.35
modeling θmE 1.67 1.20 1.07 0.99 0.94 0.92 0.92
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So as to remove the mentioned under- or overestimation, an additional tuning of ERM was
performed. The corresponding results are given in Table 3. In the case of the general piezoelec-
tric problem, the additional tuning consisted in increasing the local approximation orders of
the electric field by 2 with respect to their global counterparts. For the direct piezoelectricity,
such increasing was performed within both mechanical and electric fields. In the inverse piezo-
electricity case, higher-order equilibration was applied to the mechanical field. The corrected
(previously unsatisfactory in Table 2) values of effectivity indices are marked in bold. They are
closer to the desired value of 1.0 than in the cases without additional tuning.

The improvement of the effectivities for piezoelectricity cases of p = π = 1, 2 needs an
individual approach as in the case of uncoupled elasticity (cf. Zboiński, 2020). For the general
and direct piezoelectricity with p = π = 1 or p = π = 2, the additional tuning should be
performed or skipped, repectively. In the case of the inverse piezoelectricity, for p = π = 1, 2,
the local orders of approximation P and Q of the mechanical field should be increased by 3 or
4 with respect to the global values of p and q (cf. Zboiński, 2013).

Control of the tuning method for the piezoelectricity cases can be easily implemented into
adaptive finite element analysis of complex electro-mechanical domains in the block-wise manner,
by introduction of the control parameter for each geometrical or functional block of the analysed
domain, analogusly to the case of complex mechanical systems (cf. Zboiński, 2010).

7. Conclusions

It was shown how to adapt the equilibrated residual method (ERM) of a posteriori error estima-
tion, invented for elliptic problems, i.e. elasticity and dielectricity, to coupled problems including
piezoelectricity ones.

Effective application of ERM to piezoelectric problems needs tuning of the error estimator.
Different tuning procedures are necessary for general, direct and inverse piezoelectricity. Three
such procedures were proposed, and their effectiveness was numerically demonstrated.
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